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Abstract – The main object of this research is
performance in terms of reliability of multi-server com-
puter networks. Probability limit theorems on the queue
length and virtual waiting time in an open multi-server
queueing network in heavy traffic are derived and proved
for important probabilistic characteristics of the queue-
ing system. A reliability model is investigated and ap-
plied for a multi-server computer network, where the
time of failure is related to the parameters of the sys-
tem.
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I Introduction

Probabilistic models and queueing networks have
long been used to study the performance and re-

liability of computer systems [1, 2] and to analyse the
performance and reliability of computer networks and
of distributed information systems [3, 4]. In this paper,
we will first briefly review the works related to using
the queueing theory of computer systems reliability, and
then present some new results on the estimation of the
time of failure of a computer network.

In one of the first papers of this kind [6], the reliability
of execution of programs in a distributed computing sys-
tem is considered, showing that a program, which runs
on multiple processing elements that have to communi-
cate with other processing elements for remote data files,
can be successfully executed despite that certain system
components may be unreliable. In order to analyse the
performance of multimedia service systems which have
unreliable resources and to estimate their capacity re-
quirements, a capacity planning model using an open
queueing network is presented in [11], and in [5] a novel
model for a reliable system composed of N unreliable
systems, which can hinder or enhance each other’s relia-
bility, is discussed. In [12], the management policy of an
M/G/1 queue with a single removable and non-reliable

server is discussed and analytic results are explored, us-
ing an efficient Matlab program to calculate the optimal
threshold of the management policy and to evaluate the
system performance. In [13], the authors consider a sin-
gle machine subject to break down and employ a fluid
queue model with repair. In [15], the behaviour of a
heterogeneous finite-source system with a single server
is considered and applications in the field of telecommu-
nications and reliability theory are treated.

In this paper, first we present the probability limit
theorem on the queue length and virtual waiting time
of the customer in heavy traffic for open multi-server
queueing networks.

II The network model

Consider a network of j stations, indexed by j =
1, 2, . . . , J, and the station j has cj servers, indexed by
(j, 1), . . . , (j, cj). A description of the primitive data and
construction of processes of interest are the focus of this
section. No probability space will be mentioned in this
section, and certainly, one can always think that all the
variables and processes are defined on the same proba-
bility space.

First, {uj(e), e ≥ 1}, j = 1, 2, . . . , J, are J sequences
of exogenous interarrival times, where uj(e) ≥ 0 is the
interarrival time between the e− 1 job and the e-th job
which arrive at the station j exogenously (from the out-
side of the network). Define Uj(0) = 0, Uj(n) =
n∑
e=1

uj(e), n ≥ 1 and Aj(t) = sup{n ≥ 0 : Uj(n) ≤ t},

where Aj = {Aj(t), t ≥ 0} is called the exogenous arrival
process of the station j, i.e., Aj(t) counts the number of
jobs that arrived at the station j from the outside of the
network.

Second, {vjkj (e), e ≥ 1}, j = 1, 2, . . . , J, kj =
1, 2, . . . , cj , are c1 + . . . + cJ sequences of service times,
where vjkj (e) ≥ 0 is the service time for the e-th cus-
tomer served by the server kj of the station j. Assume
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that Vjkj (0) = 0, Vjkj (n) =
n∑
e=1

vjkj (e), n ≥ 1 and

xjkj (t) = sup{n ≥ 0 : Vjkj (n) ≤ t}, where xjkj =
{xjkj (t), t ≥ 0} is called the service process for the server
kj at the station j, i.e., xjkj (t) counts the number of ser-
vices completed by server kj at the station j during the

server’s busy time. We define µjkj =
(
M
[
vjkj (e)

])−1
>

0, σjkj = D
(
vjkj (e)

)
> 0 and λj = (M [uj(e)])

−1
> 0,

aj = D (uj(e)) > 0, j = 1, 2, ..., k, with all of these terms
assumed finite. Let pij be probability of the job after ser-
vice at the ith station of the network are arrived to the
jth station of the network, i, j = 1, 2, . . . J.
Now we introduce the following process Qjkj =
{Qjkj (t), t ≥ 0}, where Qjkj (t) indicates the number of
customers waiting to be served by server kj of the station
j at time t; j = 1, 2, . . . , J, kj = 1, 2, . . . , cj . Thus, we
introduce the following process Vjkj = {Vjkj (t), t ≥ 0},
where Vjkj (t) indicates the virtual waiting time of cus-
tomer (workload process) in kj server of the station j at
time t; j = 1, 2, . . . , J, kj = 1, . . . , cj .

The dynamics of the queueing system (to be spec-
ified) depends on the service discipline at each service
station. To be more precise, “first come, first served”
(FCFS) service discipline is assumed for all J stations.
When a customer arrives at a station and finds more than
one server available, it will join one of the servers with
the smallest index. We assume that the service station
is work-conserving; namely, not all servers at a station
can be idle when there are customers waiting for service
at that station. In particular, we assume that a station
must serve at its full capacity when the number of jobs
waiting is equal to or exceeds the number of servers at
that station.

III The main results

Let the number of servers ki in j-th station of the net-
work divide into parts: kj = 1, 2, . . . , pj (where the prob-
ability limit theorem is valid for queue length of cus-
tomers) and kj = 1, 2, . . . , rj (where the probability limit
theorem is valid for the virtual waiting time of the cus-
tomer), pj + rj = cj .

Let us denote p̂ij =
1

ci
· 1

cj
· pij ,

p̂j = 1−
J∑
j=1

ci∑
ki=1

p̂ij , β̃jkj =
λj

cj · µjkj · p̂j
− 1 > 0,

σ̃2
jkj =

λ3j
µjkj

· aj
σjkj

· 1

c2j · p̂2j
− 1 > 0, j = 1, 2, . . . , J,

kj = 1, 2, . . . , cj , t ≥ 0.

We also define

β̂jkj =
J∑

ki=1

µiki · pij + λj − µjkj > 0,

σ̂2
jkj

=
J∑

ki=1

µ3
iki
· σiki · p2ij + λ3j · aj + µ3

jkj
· σjkj > 0,

j = 1, 2, . . . , J, kj = 1, 2, . . . , cj .

We also assume that the following “overload condi-
tions” are fulfilled

J∑
i=1

ci∑
ki=1

µiki · pij + λj >

cj∑
ki=1

µiki , j = 1, 2, . . . , J. (1)

Note that these conditions guarantee that the length
of all the queues will grow indefinitely with probability
one. The results of the present paper are based on the
following theorems.

Theorem 1. If conditions (1) are fulfilled, then

lim
n→∞

P

(
Qjkj

(nt)−β̂jkj
·n·t

σ̂jkj
·
√
n

< x

)
=
∫ x
−∞ exp

(
−y

2

2t

)
dy,

0 ≤ t ≤ 1, kj = 1, 2, . . . , pj , j = 1, 2, . . . , J

and

Theorem 2. If conditions (1) are fulfilled, then

lim
n→∞

P

(
Vjkj

(nt)−β̃jkj
·n·t

σ̃jkj
·
√
n

< x

)
=
∫ x
−∞ exp

(
−y

2

2t

)
dy,

0 ≤ t ≤ 1, kj = 1, 2, . . . , rj , j = 1, 2, . . . , J .

Proof. These theorems are proved in [8], and the proof
is therefore omitted here so as not to lengthen this short
paper.

IV The reliability of a multi-server
computer network

In this section, we prove the following theorem on the
probability that a computer network fails due to over-
load.

If t ≥ max

(
max

1≤j≤pj

mjkj

β̂jkj
, max
1≤j≤rj

γjkj

β̃jkj

)
and condi-

tions (1) are fulfilled, the computer network becomes un-
reliable (all computers fail).

Proof. At first, using Theorem 1 and Theorem 2, we get
that for x > 0

lim
n→∞

P

(
Qjkj (nt)− β̂jkj · n · t

σ̂jkj ·
√

n
< x

)
=

∫ x

−∞
exp

(
−y2

2t

)
dy ,

(2)
kj = 1, 2, . . . , pj

and

lim
n→∞

P

(
Vjkj (nt)− β̃jkj · n · t

σ̃jkj ·
√

n
< x

)
=

∫ x

−∞
exp

(
−y2

2t

)
dy ,

(3)
kj = 1, 2, . . . , rj , j = 1, 2, . . . , J.

Let us investigate a computer network which consists
of the elements (computers) αj that are indicators of sta-
tions Xj , j = 1, 2, . . . , pj and the elements (computers)
γi that are indicators of stations Yi, i = 1, 2, . . . , rj

Denote

Xj =

{
1, if the element αj is reliable
0, if the element αj is not reliable,

j = 1, 2, . . . , pj and

Yi =

{
1, if the element βi is reliable
0, if the element βi is not reliable,
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i = 1, 2, . . . , rj .

Note that {Xj = 1} = {Qj(nt) < kj}, j =
1, 2, . . . , pj and {Yi = 1} = {Vi(nt) < γi}, i =
1, 2, . . . , rj . Denote the structural function of the system
of elements, connected by scheme 1 from pj +rj (see, for
example, [10]), as follows:

φ(X1, X2, . . . , Xp, Y1, Y2, . . . , Yr, t) ={
1,

∑pj
j=1Xj +

∑rj
i=1 Yi ≥ 1

0,
∑pj
j=1Xj +

∑rj
i=1 Yi < 1.

Assume y =
∑pj
j=2Xi +

∑rj
i=1 Yi. Estimate the reli-

ability function of the system (computer network) using
the formula of conditional probability

h(X1, X2, . . . , Xp, Y1, Y2, . . . , Yr, t) =

Eφ(X1, X2, . . . , Xp, Y1, Y2, . . . , Yr, t) =

P (φ(X1, X2, . . . , Xp, Y1, Y2, . . . , Yr, t) = 1) =

P (
∑pj
j=1Xj +

∑rj
i=1Xi ≥ 1) =

P (X1 + y ≥ 1) = P (X1 + y ≥ 1|y = 1) ·

P (y = 1) + P (X1 + y ≥ 1|y = 0) · P (y = 0) =

P (X1 ≥ 0) · P (y = 1) + P (X1 ≥ 1) · P (y = 0) ≤

P (y = 1) + P (X1 ≥ 1) = P (y = 1) + P (X1 = 1) ≤

P (y ≥ 1) + P (X1 = 1) =

P (
∑pj
j=2Xj +

∑rj
i=1Xi ≥ 1) + P (X1 = 1) ≤ · · · ≤

m∑
i=1

∑pj
ki=1 P (Qiki(nt) ≤ mjkj ) +

J∑
i=m+1

∑rj
ki=1 P (Viki(nt) ≤ γjkj).

Assuming that kj = pj + rj

0 ≤ h(X1, X2, . . . , Xp, Y1, Y2, . . . , Yr, t) ≤

m∑
i=1

pj∑
ki=1

P (Qiki(nt) ≤ mjkj ) +
J∑

i=m+1

rj∑
ki=1

P (Viki(nt) ≤ γjkj).

(4)

Applying Theorem 1, we obtain that for mjkj <∞

0 ≤ lim
n→∞

P (Qjkj (nt) < mjkj ) =

lim
n→∞

P

(
Qjkj (nt)− β̂j · n · t

σ̂j ·
√
n

<
mjkj − β̂j · n · t

σ̂j ·
√
n

)
=

∫ −∞
−∞

exp

(
−y

2

2t

)
dy = 0, (5)

where kj = 1, 2, . . . , pj and j = 1, 2, . . . , J .

It follows from (5), that, for mjkj <∞,

lim
n→∞

P
(
Qjkj (nt) < mjkj

)
= 0, (6)

where kj = 1, 2, . . . , pj and j = 1, 2, . . . , J .

Similarly as in (5) - (6), we prove that for γjkj <∞

lim
n→∞

P
(
Vjkj (nt) < γjkj

)
= 0, (7)

where kj = 1, 2, . . . , rj and j = 1, 2, . . . , J .

Consequently,

lim
n→∞

h(X1, X2, . . . , Xp, Y1, Y2, . . . , Yr, t) = 0

(see (4), (6) and (7)), which completes the proof.

V Applications of the main results

Finally, denote Vj(t) = min( min
1≤m≤pj

Qjm(t), min
1≤l≤rj

Vjl(t)),

as t > 0, kj = pj + rj and j = 1, 2, . . . , J.
Note that P (Vj(t) > 0) is a probability of blocking

of the node j in a multi-server computer network, be-
cause if Vj(t) > 0, then Qjm(t) > 0,m = 1, 2, . . . , pj
and Vjl(t) > 0, l = 1, 2, . . . , rj as kj = pj + rj and j =
1, 2, . . . , J. Thus, we prove the following theorem about
the probability of blocking of a multi-server computer
network.

Theorem 5.1. If conditions (1) are fulfilled, then

lim
t→∞

P (Vj(t) > 0) = 1, (8)

j = 1, 2, . . . , J

Proof. Denote Dc as a complement of set D. Also
denote Aj,t = {Qjm(t) > 0},m = 1, 2, . . . , pj and
Bj,t = {Wjl(t) > 0}, l = 1, 2, . . . , rj for kj = pj+rj , t > 0
and j = 1, 2, . . . , J. So, we find that

Aj =

{
min

1≤m≤pj
Qjm(t) > 0

}
=

rj⋂
m=1

Aj,m =

rj⋂
m=1

{Qjm(t) > 0} and

Bj =

{
min

1≤l≤rj
Wjl(t) > 0

}
=

rj⋂
l=1

Bj,l =

rj⋂
l=1

{Wjl(t) > 0}

for kj = pj + rj , t > 0 and j = 1, 2, . . . , J.
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Thus, we get P (Vj(t) > 0) = P (Aj
⋂
Bj). Next, we ob-

tain that

P ((Vj(t) > 0)c) = P (Acj ∪Bcj ) =

P

({
pj⋂
m=1

Aj,m

}c⋃{
rj⋂
l=1

Bj,l

}c)
=

P

({
pj⋃
m=1

Acj,m

}⋃{
rj⋃
l=1

Bcj,l

})
≤

P

(
pj⋃
m=1

Acj,m

)
+ P

(
rj⋃
l=1

Bcj,l

)
≤

pj∑
m=1

P
(
Acj,m

)
+

rj∑
l=1

P
(
Bcj,l

)
≤

pj∑
m=1

(1− P (Aj,m)) +

rj∑
l=1

(1− P (Bj,l)) (9)

From (9) we derive that

P ((Vj(t) > 0)c) ≤
pj∑
m=1

(1− P (Aj,m))+

rj∑
l=1

(1− P (Bj,l)) ,

as kj = pj + rj and j = 1, 2, . . . , J.

Thus,
lim
t→∞

P ((Vj(t) > 0)c) ≤

pj∑
m=1

(
1− lim

t→∞
P (Aj,m)

)
+

rj∑
l=1

(
1− lim

t→∞
P (Bj,l)

)
, (10)

as kj = pj + rj and j = 1, 2, . . . , J.

If conditions (1) are satisfied, let us prove that

lim
t→∞

P (Aj,m) = 0, m = 1, 2, . . . , pj

and j = 1, 2, . . . , J.
However, if kj = pj + rj and j = 1, 2, . . . , J and ap-

plying theorem 5.1 we obtain

lim
t→∞

P (Aj,m) = lim
t→∞

P (Qj,m(t) > 0) =

lim
t→∞

P

(
Qj,m(t)− β̂jkj · t

σ̂j ·
√
t

> − β̂j · t
σ̂j ·
√
t

)
=

1− lim
t→∞

P

(
Qj,m(t)− β̂jkj · t

σ̂j ·
√
t

≤ − β̂j ·
√
t

σ̂j

)
=

1− Φ (−∞) = 1,

as m = 1, 2, . . . , pj and j = 1, 2, . . . , J.

Similarly we prove that

lim
t→∞

P (Bj,l) = 0 for l = 1, 2, . . . , rj and j = 1, 2, . . . , J.

Consequently, we derive (see (9) and (10))

lim
t→∞

P ((Vj(t) > 0)c) = 0

or lim
t→∞

P ((Vj(t) > 0) = 1, j = 1, 2, . . . , J.

The proof of theorem 5.1 is complete.
Consequently, if conditions (1) are fulfilled, the whole

multi-server network is busy.
Next, we present a theorem about the fluid approxi-

mation of a queue of jobs and a virtual waiting time of
customers in an open multi-server queueing network un-
der conditions of heavy traffic.
Theorem 5.2. If conditions (1) are fulfilled, then for
n ≥ 1 and 0 ≤ t ≤ 1

(
Qj1(nt)

n
;
Qj2(nt)

n
; . . . ;

Qjpj (nt)

n
;

Vj1(nt)

n
;
Vj2(nt)

n
; . . . ;

Vjrj (nt)

n
)⇒

(
β̂j1 · t; β̂j2 · t; . . . ; β̂jpj · t; β̃j1 · t; β̃j2 · t; . . . ; β̃jrj · t

)
,

where kj = pj + rj and j = 1, 2, . . . , J.
Next, we present the law of the iterated logarithm

for the queue length of jobs and a virtual waiting time
of customers in an open multi-server queueing network
under conditions of heavy traffic.
Theorem 5.3. If conditions (1) are fulfilled, then for
a(t) =

√
2lnlnt, t > 0,

P

(
lim
t→∞

Qj,m(t)− β̂jm · t
σ̂jm · a(t)

= 1

)
=

P

(
lim
t→∞

Qj,m(t)− β̂jm · t
σ̂jm · a(t)

= −1

)
= 1,

m = 1, 2, . . . , pj and

P

(
lim
t→∞

Vj,l(t)− β̃jl · t
σ̃jl · a(t)

= 1

)
=

P

(
lim
t→∞

Vj,l(t)− β̃jl · t
σ̃jl · a(t)

= −1

)
= 1,

l = 1, 2, . . . , rj , kj = pj + rj and j = 1, 2, . . . , J.

VI Concluding remarks and future research

1. Conditions (1) are fundamental, - the behaviour of
the whole network and its evolution is not clear, if con-
ditions (1) are not satisfied. Therefore, this fact is the
object of further research and discussion.
2. The relation between virtual waiting time and queue
length is present but has not been proved yet.
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